148,709 research outputs found

    Do the gravitational corrections to the beta functions of the quartic and Yukawa couplings have an intrinsic physical meaning?

    Get PDF
    We study the beta functions of the quartic and Yukawa couplings of General Relativity and Unimodular Gravity coupled to the λϕ4\lambda\phi^4 and Yukawa theories with masses. We show that the General Relativity corrections to those beta functions as obtained from the 1PI functional by using the standard MS multiplicative renormalization scheme of Dimensional Regularization are gauge dependent and, further, that they can be removed by a non-multiplicative, though local, field redefinition. An analogous analysis is carried out when General Relativity is replaced with Unimodular Gravity. Thus we show that any claim made about the change in the asymptotic behaviour of the quartic and Yukawa couplings made by General Relativity and Unimodular Gravity lack intrinsic physical meaning.Comment: 6 pages, 7 figure

    Non-linear Symmetry-preserving Observer on Lie Groups

    Full text link
    In this paper we give a geometrical framework for the design of observers on finite-dimensional Lie groups for systems which possess some specific symmetries. The design and the error (between true and estimated state) equation are explicit and intrinsic. We consider also a particular case: left-invariant systems on Lie groups with right equivariant output. The theory yields a class of observers such that error equation is autonomous. The observers converge locally around any trajectory, and the global behavior is independent from the trajectory, which reminds of the linear stationary case.Comment: 12 pages. Submitted. Preliminary version publicated in french in the CIFA proceedings and IFAC0

    Possibility of observing MSSM charged Higgs in association with a W boson at LHC

    Full text link
    Possibility of observing associated production of charged Higgs and W boson in the framework of MSSM at LHC is studied. Both leptonic and hadronic decays of W boson are studied while the charged Higgs boson is considered to decay to a τ\tau lepton and a neutrino. Therefore two search categories are defined based on the leptonic and hadronic final states, i.e. τ+ETmiss\ell \tau+E^{miss}_{T} and jjτ+ETmissjj \tau+E^{miss}_{T} where =e\ell=e or μ\mu and jj is a light jet from WW decay. The discovery chance of the two categories is evaluated at an integrated luminosity of 300 \invfb at LHC. It is shown that both leptonic and hadronic final states have the chance of discovery at high \tanb. Finally 5σ5\sigma and 3σ3\sigma contours are provided for both search categories.Comment: 20 pages, 19 figure

    Implications of SUSY Model Building

    Full text link
    We discuss the motivations and implications of models of low-energy supersymmetry. We present the case for the minimal supersymmetric standard model, which we define to include the minimal particle content and soft supersymmetry-breaking interactions which are universal at the GUT or Planck scale. This model is in agreement with all present experimental results, and yet depends on only a few unknown parameters and therefore maintains considerable predictive power. From the theoretical side, it arises naturally in the context of supergravity models. We discuss radiative electroweak symmetry breaking and the superpartner spectrum in this scenario, with some added emphasis on regions of parameter space leading to unusual or interesting experimental signals at future colliders. We then examine how these results may be affected by various modifications and extensions of the minimal model, including GUT effects, extended gauge, Higgs, and matter sectors, non-universal supersymmetry breaking, non-conservation of R-parity, and dynamical supersymmetry breaking at low energies.Comment: Contribution to the DPF long range study, working group on 'Electroweak Symmetry Breaking and Beyond the SM Physics'; LaTeX file without figures, 60 pages. The complete PS file, including figures, can be obtained by anonymous ftp from ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-879.ps.

    Symmetry-preserving Observers

    Full text link
    This paper presents three non-linear observers on three examples of engineering interest: a chemical reactor, a non-holonomic car, and an inertial navigation system. For each example, the design is based on physical symmetries. This motivates the theoretical development of invariant observers, i.e, symmetry-preserving observers. We consider an observer to consist in a copy of the system equation and a correction term, and we give a constructive method (based on the Cartan moving-frame method) to find all the symmetry-preserving correction terms. They rely on an invariant frame (a classical notion) and on an invariant output-error, a less standard notion precisely defined here. For each example, the convergence analysis relies also on symmetries consideration with a key use of invariant state-errors. For the non-holonomic car and the inertial navigation system, the invariant state-errors are shown to obey an autonomous differential equation independent of the system trajectory. This allows us to prove convergence, with almost global stability for the non-holonomic car and with semi-global stability for the inertial navigation system. Simulations including noise and bias show the practical interest of such invariant asymptotic observers for the inertial navigation system.Comment: To be published in IEEE Automatic Contro

    On the evidence for brown-dwarf secondary stars in cataclysmic variables

    Get PDF
    We present the K-band spectrum of the cataclysmic variable LL And, obtained using NIRSPEC on Keck-II. The spectrum shows no evidence for the absorption features observed by Howell & Ciardi (2001), which these authors used to claim a detection of a brown-dwarf secondary star in LL And. In light of our new data, we review the evidence for brown-dwarf secondary stars in this and other cataclysmic variables.Comment: 6 pages, to appear in Monthly Notices, accepte

    Identifying capacitive and inductive loss in lumped element superconducting hybrid titanium nitride/aluminum resonators

    Full text link
    We present a method to systematically locate and extract capacitive and inductive losses in superconducting resonators at microwave frequencies by use of mixed-material, lumped element devices. In these devices, ultra-low loss titanium nitride was progressively replaced with aluminum in the inter-digitated capacitor and meandered inductor elements. By measuring the power dependent loss at 50 mK as the Al-TiN fraction in each element is increased, we find that at low electric field, i.e. in the single photon limit, the loss is two level system in nature and is correlated with the amount of Al capacitance rather than the Al inductance. In the high electric field limit, the remaining loss is linearly related to the product of the Al area times its inductance and is likely due to quasiparticles generated by stray radiation. At elevated temperature, additional loss is correlated with the amount of Al in the inductance, with a power independent TiN-Al interface loss term that exponentially decreases as the temperature is reduced. The TiN-Al interface loss is vanishingly small at the 50 mK base temperature.Comment: 10 pages, 5 figure

    Characterization and In-situ Monitoring of Sub-stoichiometric Adjustable Tc Titanium Nitride Growth

    Get PDF
    The structural and electrical properties of Ti-N films deposited by reactive sputtering depend on their growth parameters, in particular the Ar:N2 gas ratio. We show that the nitrogen percentage changes the crystallographic phase of the film progressively from pure \alpha-Ti, through an \alpha-Ti phase with interstitial nitrogen, to stoichiometric Ti2N, and through a substoichiometric TiNX to stoichiometric TiN. These changes also affect the superconducting transition temperature, Tc, allowing, the superconducting properties to be tailored for specific applications. After decreasing from a Tc of 0.4 K for pure Ti down to below 50 mK at the Ti2N point, the Tc then increases rapidly up to nearly 5 K over a narrow range of nitrogen incorporation. This very sharp increase of Tc makes it difficult to control the properties of the film from wafer-to-wafer as well as across a given wafer to within acceptable margins for device fabrication. Here we show that the nitrogen composition and hence the superconductive properties are related to, and can be determined by, spectroscopic ellipsometry. Therefore, this technique may be used for process control and wafer screening prior to investing time in processing devices
    corecore